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Abstract-The stability of the steady solution of general heat conduction equation with temperature- 
dependent as well as position-dependent internal energy source, radiation, and physical properties is 
studied. It is shown by way of a simple example that a temperature-dependent energy source may cause 
the temperature to increase without limit. In case of locally one-dimensional steady-state temperature and 
property distributions, the condition for the temperature distribution in an infinite solid to be stable is 

derived. The result is discussed as to its validity in different cases. 

NOMENCLATURE 

constant coefficient, equation (9a) ; 
specific heat ; 
total radiative flux vector, equation(28a) ; 
function of r ; 
separation constant ; 
separation constant ; distance ; 
characteristic length ; 
constant ; 
function of z ; 
rate of internal energy generation per 
unit volume ; 
constant; 
function of z; 
net rate of energy loss per unit volume 
(radiative) ; 
position vector; 
function of z; cylindrical or spherical 
coordinate ; 
energy source flux vector, equation (28b) ; 
temperature ; 
perturbation temperature; 
constant ; 
dimensionless temperature, equation 
(2c) ; 
time ; 

function of x ; 
rectangular coordinate; 
function of y; 
rectangular coordinate; function of z ; 
function of 2; 
rectangular coordinate ; variable ; 
coefficient of diffusion, equation (23); 
vector function, equation (24); 
vector function, equation (26); 
magnitude of fi ; 
function, equation (25); 
function, equation (27); 
function of t; 
coefficient of thermal conductivity; 
parameter ; 
constant ; 
separation parameter ; 
dimensionless coordinate, equation (2a) ; 
density ; 
dimensionless time, equation (2b); 
constant, equation (9b). 

Subscripts 
k running index ; 
min. minimum value ; 
n, running index ; 
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0, initial value ; particular value ; 
s, steady value ; 

W, value at the boundaries. 

1. INTRODUCTION 

IN PROBLEMS of heat conduction through solids 
with or without internal energy generation or 
radiation the interest is frequently in finding the 
steady temperature distribution When the 
energy source and the physical properties of the 
solid are independent of temperature the dif- 
ferential equation to be solved is usually manage- 
able. It possesses, under certain conditions, 
a unique solution which is also the limit as time 
tends to infinity of the solution of the correspond- 
ing unsteady problem 

The heat conduction equation has been treated 
in varying degree of generality. In the relatively 
recent works [l-3], the energy source term was 
assumed, most generally, to be position- and 
time-dependent. The thermal properties of the 
medium were taken either constant [l-3] or 
position-dependent [4]. In some cases [5,6], 
the heat conduction problem is considered with 
temperature-dependent properties but without 
energy source and radiation 

When the energy source and/or physical 
properties are temperature-dependent it cannot 
be claimed that the steady solution is always the 
physical limit of the corresponding unsteady 
solution. In those cases, an effort toward obtain- 
ing the steady solution from the steady equation 
alone may be successful but worthless since this 
solution may not represent a physically possible 
temperature distribution unless it is stable under 
an arbitrary perturbation. The situation will later 
be made more clear by way of a simple example. 

It may formally be possible to judge the 
stability of the steady solution after solving 
the unsteady problem. This, however, is not 
always practical ; one should be able to de- 
termine the stability from the very equation 
of heat transfer. Physically, the unsteady 
equation of transfer governs the readjust- 
ment of the local temperature at any instant in 
order to allow for the net gain in local internal 

energy due to various mechanisms, namely 
thermal conduction, energy generation, and 
radiation. When the latter are independent of 
temperature the attainment of a final steady- 
state temperature distribution is possible, so that 
the net energy flux across any closed control sur- 
face within the solid vanishes. On the other hand, 
when the mechanisms of energy input are strongly 
temperature-dependent, while the temperature 
tries to adjust itself to the local momentary state, 
it may be so that the rate of energy input 
increases more rapidly than the conduction and 
radiation losses could possibly follow. As a 
consequence, there may be no asymptotic limit 
for the temperature distribution. The temperature 
increases until the initial assumptions on the 
physics of the problem become invalid and new 
phenomena come into effect to alter them. 

In the following a simple demonstrative 
example is given firstly. Later, the heat conduc- 
tion equation is considered in a form as general 
as practicable and its steady solution is analyzed 
from the stability point of view. The stability 
criterion in a locally one-dimensional problem, 
which is the outcome of the analysis, is dis- 
cussed last. 

2. AN EXAMPLE 

Consider the one-dimensional, unsteady prob- 
lem with constant material properties and with 
energy generation which is linear in temperature. 
The differential equation for the temperature is 
then 

1dT 8T 1 -_ = 
a at @ + $0 + AT)* (11 

where a is thermal diffusivity, K thermal con- 
ductivity, Q. and R are constants. The boundary 
conditions will be assumed, for simplicity, as 
constant temperature T, at the two boundaries 
x = 0 and x = 1. The initial condition is an 
arbitrary temperature distribution T(x, 0) = 
T,(x) provided that it is integrable within the 
interval (0, I), and that it equals T, at the 
boundaries. 
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The formulation may be made dimensionless 
by the following transforms: 

1 
x=-l, 

l2 
II 

t=-Z_r, T= T +% (2a,b c) W xc! 1’ ’ 

The resulting equation is 

aT a2T I 12 _ 1 l2 
x=@+,;;iT+;&l+gr,). (3) 

0 

If, further, the last term is assumed to vanish, 

1 + $ T, = 0, (4) 
0 

the equation becomes a simple one, 

aT a2T 112 _ 
aZ_ a52 

--+---T 

with the conditions imposed on F(c, 7) 

RO,7) = ,T((n,z) = 0, (6) 

,T(<,O) = Qt;), To(O) = To(n) = 0. (7) 

The solution to equation (5) may be given as a 
trigonometric series [7] 

(8) 

where 

I 

Ck = f 
s 

‘ii,(<) sin ktd& x = b$ . (WV 

0 

The COCfiCient ck exists, in general, for all VdUCS 
of parameter k. Since the least value of k is unity 
the temperature distribution is stable (i.e. it does 
not grow in time) if 1 < 1. In other words, T 
tends to the limit zero everywhere as time in- 
creases if 

A<$. (10) 

If, on the other hand, I does not satisfy the above 
condition the temperature grows without limit. 
In the particular case where 

(11) 

all components of T excepting the first will 
eventually die out leaving the steady distribution 

‘ii, = C1 sin t. (12) 

If, by chance, the initial distribution were to 
coincide exactly with one of the sine functions, 
say T,(r) = To sin m& where To is a constant and 
m is an integer, then one would have 

,F(t, 7) = Toe(X-m2h sin mr. (13) 

The stability of (13) cannot, however, be judged 
through a comparison between x and m2. 
Although it would appear that when x < m2, 

even if x > 1, the solution tends to zero every- 
where, this is not always the case. After a slight 
perturbation of T from the pure sinusoidal form 
instability sets in if x > 1. 

Consider now the steady equation 

d2T 
$ + x’ii, = 0, 

subject ot the same homogeneous boundary 

(14) 

conditions as (6). The problem always possesses 
a trivial solution 

‘i(r;) = 0, 

and a nontrivial solution 

(15) 

T,(t) = To sin rnt (16) 

only when x = m2 where m is an integer. From 
the previous discussion it is seen that both the 
trivial and nontrivial solutions are unstable if 
x > 1, and stable if x = 1. When x is not an 
integer there is only the trivial solution which is 
unstable if 1 > 1 and stable otherwise. 

Summarizing, the stability of the steady 
solution depends only on the value of x. The exis- 
tence of a solution of the steady equation does 
not guarantee its stability. In simple cases where 
the unsteady solution can be found without 
difficulty the steady solution can always be 
obtained from the unsteady solution provided 
that the latter assumes a limit as time tends to 
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infinity. When this is difficult or not possible the 
stability of the steady solution should first be 
investigated before attempting to find it. 

In the foregoing example it is interesting to 
note that, when the interval (0, I) extends to 
infinity, the stability condition (10) reduces to 

I < 0, (lOa) 

which is more stringent than (10). One can 
introduce a characteristic length 

1, = Jw (17) 

so that when I p I, the medium may be con- 
sidered as being of infinite extent, and when 1 
is comparable to 1, the finite dimension of the 
medium must be taken into account. A reduction 
in limproves stability. However, this effect should 
depend upon the type of boundary conditions 
imposed in general. 

3. PERTURRATION EQUATION 

In order to obtain a sufliciently general 
formulation of the problem the following assump- 
tions are in order. 

(a) The material is a homogeneous and iso- 
tropic solid. The physical properties may depend 
upon temperature as well as on coordinates in 
a differentiable manner. 

(b) Energy is generated at a rate which may 
vary with temperature and coordinates in a 
differentiable manner. 

(c) The material is transparent to thermal 
radiation so that volume emission and absorp- 
tion take place. Emission may be interpreted as 
internal energy loss and absorption as energy 
source so far as their roles in the equation are 
concerned They should both be obtained, in 
general,throughintegralmanipulationsextended 
over space, frequency, and temperature at any 
instant. It will suffice, however, in the present 
analysis to introduce a term which implicitly 
represents a temperature- and position-depen- 
dent energy loss whether this be due to radiative 
transfer or due to a different mechanism The 
finding of the explicit temperature dependence 

of this loss term should be formidable in case of 
radiation. 

Under the preceding assumptions the unsteady 
heat transfer equation may be written as 

PC;= V.(icV?) + Q -R (18) 

where p, c, K, are the density, specific heat, and 
the coefficient of thermal conductivity of the 
solid obeying Fourier law, Q is the rate of 
internal energy generation per unit volume, 
and R is the rate of net energy loss from unit 
volume, all being functions of position, Y, and 
temperature, T The temperature is a function 
of position and time, t. 

Let a steady temperature distribution T,(r) 

exist. The various quantities entering equation 
(18) attain steady values which will be indicated 
by subscript s [e.g. K, = tc( r, T,), etc.]. They must 
satisfy the steady heat transfer equation 

V.(rc,VT,) + Q, - R, = 0. (19) 

The difference between (18) and (19) is simply 
the perturbation equation for the temperature 
distribution which is perturbed from its steady 
state ; 

PC+- T,) = v.(uvT- u,VT,) +(Q- Q,) 

- (R - R,). (20) 

Introducing T* = T - T, the perturbation tem- 
perature, and linearizing the equation for small 
perturbations one can obtain 

pScS ‘; = ic,V’T* + 

x VT* + b- [(gT:q + (i$, 
aR -- 0 1 aT TZT‘ T*. (21) 

The coefficients of T*, VT* and V2T* are 
known functions of position since they are all 
evaluated at the steady temperature T, which is 
supposed to be known. 
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One can write equation (21) also in the form 

;F = V2T* + /I. VT* + yT* (22) 

where ~1, /I, y are functions of position only, 
given by 

a = $ (coefficient of thermal diffusivity), (23) 
s s 

/3 = i (&VT, + VK,) = (V In K)~, (24) 
s 

y = ; [V. (&VT,) + Q: - R:]. (25) 
s 

In the last three expressions prime denotes 
differentiation with respect to temperature [e.g. 
rc; = (hc/~?T),]. By the use of (19) in (25) y may 
be expressed in a different form for later use ; 

y = V(ln rc): . VT, + Q-R ’ 
( ) K s 

(254 

There is an alternative way in obtaining of the 
perturbation equation. If use is made of the 
flux vectors for radiation loss and energy source 
terms the perturbation equation becomes 

a; = V*T* + pi. VT* + ylT* (22a) 

with 

/Ii = ; [(W, + s: - E-l, (26) 
s 

y1 = ; [V. (iQT,) + v. s: - v. F:], 
s 

where 

(27) 

V.F=R, V.S=Q. (2ga, b) 

It is more direct to define Q than the corres- 
ponding flux S. Furthermore, R can be deter- 
mined directly from the specific intensity of 
radiation, at least in principle. Therefore, it 
appears more natural and simple to adopt the 
first formulation. The coefficient of VT* then 

consists only of the variation of the thermal 
conductivity. 

4. ANALYSIS 

The discussion of the stability of T, has now 
been converted to the study of the general 
properties of the perturbation equation (22). 
Since the time-dependence of the solution of 
equation (22) will be the deciding factor in this 
study the first step should be to separate out the 
time and space components of the solution by ad- 
mitting a product form 

T*(r, r) =f(r) . W, (2% 

which effects 

0’ + pe = 0, (30) 

V*f+ B.Vf+ [r + (/&)y‘= 0, (31) 

where p is the separation constant, a real number. 
The perturbation temperature T* willbeassumed 
to satisfy homogeneous boundary conditions. 
This assumption is not a restriction from 
the stability viewpoint 

Clearly, the solution contains an exponential 
time factor 0 = e- . Icf The initial perturbation 
should, therefore, be expressible in terms of the 
solutions of (31),f(r; p). Depending on the finite 
or infinite extent of the boundaries, the repre- 
sentation may either be of series or integral or 
mixed type. The summation or integration para- 
meters contain discrete or continuous eigen- 
values of p Since (31) is multidimensional, the 
eigenvalues of p are, in general, coupled with 
the eigenvalues of the other separation para- 
meters if equation (31) is separable. Otherwise, 
the problem is too complicated to be considered 
here. 

In order that any arbitrary initial perturba- 
tion T*(r,O) be expressible in terms of the 
functions f( r ; p) the latter must be a complete 
set The set of all eigenfunctions of equation (31) 
if they exist, is of this character, namely complete. 
Therefore, one should consider all eigenvalues 
of (31) Among them p is the one with a decisive 
role on stability since it appears as the time 
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coefficient in the exponential factor. If the eigen- 
values of p are all positive then all perturbations 
are stable. If, on the other hand, the set of 
eigenvalues consists of negative members the 
perturbations which are expressible in terms of 
the eigenfunctions corresponding to the negative 
eigenvalues are unstable. This means that the 
steady temperature will grow anyway. Finally, if 
p = 0 is an eigenvalue of (31) then, since (39) 
gives a time factor proportional to time, the 
temperature is again unstable. 

‘Further separation of equation (31) into its 
coordinate components is, in general, not 
possible. However, it may be simplified in form 
by a proper choice of coordinate axes at the 
point of interest. Hence, for example in local 
rectangular coordinates with Ox-axis parallel 
to /I, the spatial component (31) of the pertur- 
bation equation becomes 

where /? is the magnitude of 8. Equation (32) 
cannot be separated still since j? and y are 
generally functions of all three coordinates. 

Leaving the question whether equation (32) 
possesses a complete set of characteristic solu- 
tions for f -with a lowest eigenvalue of p, it may 
be reiterated that if it does then the steady-state 
temperature is stable only if the lowest eigenvalue 
of p is positive. If the range of eigenvalues of p 
consists of nonpositive values there are then 
certain preferred forms of perturbation which are 
unstable and expressible in terms of the set of 
eigenfunctions corresponding to those nonposi- 
tive eigenvalues. 

5. SPECIAL CASE: THE STEADY PROBLEM IS ONE- 
DIMENSIONAL 

In order to be able to reach more concrete 
conclusions the problem will now be restricted 
to the case where a, j? and y are functions of x 
alone. In view of the structure of these quantities, 
the assumption requires that the steady para- 
meters be one-dimensional. The perturbation, 
however, is still allowed to vary three-dimen- 
sionally. 

Introduction of a product solution f = X(x) 
Y(y)Z(z) into equation (32) results in three 
equations, 

d2X 
=+/WE 

+ [y(x) + -& - (k + 01x = 03 (33) 

d2Y 
__ + kY= 0, 
dy2 

(34) 

d2Z 

dz2 + lZ = O. 
(35) 

The last three equations are all special forms of 
Liouville equation 

g Pdg + [4(z) + M)lY = 0. 
[ 1 

(36) 

The general behaviour of the solutions of (36) 
is determined by the functions p, q, r and the 
parameter A. The important results of the 
analysis of Liouville equation are the following 
(see e.g. [7], Chapters 5 and 6). 

Let p, q, r be nonsingular and p, I positive 
within a finite interval of z. 

(a) There is an infinite set of district values 
(eigenvalues) of A for which the solutions (eigen- 
functions) are oscillatory, and they satisfy 
Dirichlet-Neumann type boundary conditions. 

(b) The set of eigenfunctions is complete. 
(c) The set of eigenvalues contain a minimum 

(imin and extends to infinity. 
(d) An oscillatory solution is obtained if 

q + Ar > 0. The condition sets a lower bound 
-q/r for eigenvalues, i.e. A, > - (q/r), but 
does not determine /?ni.. 

(e) If the interval for z extends to infinity the 
distribution of eigenvalues and eigenfunctions 
are continuous rather than being discrete. In this 
case, A,,,, tends to the lower bound -q/r. 

For stability purposes one may consider an 
infinite medium thus allowing the temperature 
perturbations to span the whole space. A 
continuous spectrum of eigenvalues and com- 
plete set of eigenfunctions are then needed to 
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represent any possible three-dimensional per- 
turbation. Returning to equations (33)(35), 
the allowed range of eigenvalues should coincide 
with the interval -(q/r) < LI < co in each of 
them In equations (34) and (35) p = I = 1,4 = 0, 
hence k > 0, I > 0. In equation (33) on the other 
hand, p = e JBdX, q = p[y - (k + I)], and r = 
(p/a). Obviously, p and r are positive and non- 
singular. Supposing that all gradients at steady- 
state are finite, q has no singularity either; the 
eigenvalues all satisfy the condition 

P’ - +r - (k + 01. (38) 

For stability p should be positive. Since its 
smallest value is obtained when k and 1 are 
smallest, namely zero, one concludes that the 
perturbations are stable if y is negative. In terms 
of physical parameters-the criterion for stability 
is then 

& (ln K): 2 + z ’ - x 
0 (7 

’ < 0. (39) 
s s 

It is equally possible to consider a locally one- 
dimensional steady case which has cylindrical 
or spherical symmetry instead. Separation is 
again accomplished in the same lines, but now tl, 
/?, and y depend upon x, the radial coordinate, 
alone. It can be shown by similar arguments that 
the stability criterion (39) is valid in those cases 
too. 

6. DISCUSSION 

(a) The condition for stability was obtained 
in a special case: The steady problem is locally 
one-dimensional, may the nontrivial dimension 
be planar, cylindrical, or spherical at the point 
of interest. Usually the dependence of the physi- 
cal properties on coordinates as well as on 
temperature is rather weak. It is, therefore, 
tempting to generalize the criterion to the cases 
where the steady problem also is three-dimen- 
sional. At least when the properties vary slowly 
one may expect that stability exists if 

V(ln rc):. VT, + z - 5 
0’ 0’ 

< 0. 
K (40) 

5 s 

(b) The effect of the first term of (39) on 
stability may either be like that of a source or a 
loss. Writing explicitly, 

uI, drc, dT, 

x,2 dx ’ dx’ (41) 

it is seen that the first term on the right behaves 
like an additional energy source if ~1 and T, both 
increase in the same direction, and like a loss if 
they increase in opposite directions. When 
rcI, is positive the second term acts like a loss 
term if rc, and T, increase in the same direction, 
and like a source term otherwise. When it is 
negative the reverse is true. 

In particular, if the thermal conductivity is 
independent of temperature the stability cri- 
terion simplifies to 

0 0 a’< R’ 
K s u s’ 

(c) In the majority of cases of interest, the 
physical properties may be assumed constant, 
i.e. independent of temperature and coordinates. 
Then, (40) reduces to 

Q: < R:, (43) 

meaning that the loss term should depend 
upon temperature more strongly than the source 
term does. 

(d) In certain phenomena of physics governed 
by the general diffusion equation (18) the 
stability of the physical quantity in question 
may be checked by the same criterion. In [7] 
may be found several examples of interest 
scattered throughout the text (see Ch. 12.1, 
pp. 1595-1603 for an application to chain reac- 
tion in fissionable material). 

(e) A final remark should be made about the 
assumption that eigenvalues and eigenfunctions 
are distributed continuously. The example given 
at the outset shows that, in order for the medium 
to be considered as infinite, its boundaries should 
be separated by a distance which is large com- 
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pared to a characteristic length. In the general is assumed to be one-dimensional, perturbations 
case, one should be able to make a similar are not limited to one dimension only ; they 
comparison with a suitably defined characteristic may be three-dimensional and may be repre- 
length. If the characteristic dimension of the sented in product form through series or integrals 
medium is comparable with the characteristic over the spectrums of eigenvalues. 
length then the lowest eigenvalue may con- In the general, three-dimensional case the 
siderably be greater than the lower bound counterpart of condition (39) must be sought 
- q/r; hence, for stability q need not be nega- before it is generalized into (40). This requires a 

tive. It may have a small but finite positive value. thorough analysis of equation (31). 
The roles of the quantities Q and R, however, do 
not change although they should now be 
evaluated for a system with finite boundaries. 
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SUR LA STABILITfi DE LA DISTRIBUTION DANS UN SOLIDE TRANSPARENT AVEC UNE 
SOURCE INTERNE D’tiNERGIE 

R&urn&On ktudie la stabilitC de la solution de 1’Cquation gCnbrale de la conduction de chaleur avec 
source interne d’tnergie fonction de la tempdrature et de la position, rayonnement et proprittb physiques 
variables. On montre g partir d’un exemple simple que la source d’tnergie dtpendant de la temptrature 
peut provoquer un accroissement illimiti de la temperature. Dans le cas de distributions monodimension- 
nelles stationnaires de tempkrature et de propri&&s on obtient la condition de stabilitk de la distribution de 

temptrature dans un solide infini. Le rtsultat est discutt ainsi que sa validit dans diffkrents cas. 

DIE STABILITiiT DER STATIONAREN TEMPERATURVERTEILUNG IN EINEM 
DURCHSICHTIGEN FESTKdRPER MIT INNEREN WARMEQUELLEN 

Zusammenfassung-Die Stabilitgt der Liisung der allgemeinen Wgrmeleitungsgleichung mit temperatur- 
abhingiger-und lageabhgngiger innerer Wiirmeerzeugung, Strahlung und abhtingigen Stoffwerten wird 
untersucht. An einem einfachen Beispiel wird gezeigt, dass eine temperaturabhlngige WIrmequelle eine 
unbegrenzte Temperaturerhhhung hervorrufen kann. Fiir eindimensionale, stationiire Temperatur- und 
Stoffwertverteilung wird die Bedingung fti stabile Temperaturverteilung im unendlichen K&per abgeleitet. 

Die Gtiltigkeit des Ergebnisses wird fiir verschiedene Fglle diskutiert. 
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OB YCTO@II4BOc;rkl CTAqHOHAPHOl-0 PACrIPEAEJIEHkIH TEMIIEPATYPbI 
B nP03PAqHOM TBEPAOM TEJIE C BHYTPEHHLlM kICTOYHRKOM 

3HEPI'kIB 

AHHoTaqlisl-B3y~aeTc~ cTaqaoHapHoe pememe ypaBHeHElR TenJlOnpOBO$(HOCTH B cnysae, 

HOr;[a BHyTpeHHHt IICTOYHIIH ElHeprElIl, H3JIy'leHHe II @3WIeCKHe CBOZtCTBa 3aBHCRT KaK OT 

TeMnepaTypbq TaK A 0T KoopgnKaT. Ha npocToM npmepe noKa3aHo,9~0 IU~T~YHMK~H~~IW~, 

3aBIWnlI@ OT TeMnepaTypbI, MOPKeT BbI3BaTb 6ecnpenenbmti pOCT TeMnepaTypbI. B CJIysae 

onHoMepHor0 cTaqAoHapHor0 pacnpegenesm TemepaTypbl II CBO~CTB nonyseH0 ycnosue 

yCTOiYHBOCTI4 pacnpenenems TemepaTypM B 6eCKOHeqHOM TBepROM Tene. OBcyHcgaeTcK 

CnpaBe&JlllBOCTb nOJIy=ieHHbIX pe3yJIbTaTOB. 
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