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Abstract—The stability of the steady solution of general heat conduction equation with temperature-

dependent as well as position-dependent internal energy source, radiation, and physical properties is

studied. It is shown by way of a simple example that a temperature-dependent energy source may cause

the temperature to increase without limit. In case of locally one-dimensional steady-state temperature and

property distributions, the condition for the temperature distribution in an infinite solid to be stable is
derived. The result is discussed as to its validity in different cases.

NOMENCLATURE

constant coefficient, equation (9a);
specific heat ;

total radiative flux vector, equation(28a);
function of r;

separation constant;

separation constant; distance;
characteristic length;

constant ;

function of z;

rate of internal energy generation per
unit volume;

constant;

function of z;

net rate of energy loss per unit volume
(radiative);

position vector;

function of z; cylindrical or spherical
coordinate ;

energy source flux vector, equation (28b);
temperature ;

perturbation temperature;;
constant;

dimensionless temperature,
(2¢);

time;

equation

X, function of x;
x, rectangular coordinate;
Y, function of y;
y, rectangular coordinate; function of z;
Z, function of z;
z,  rectangular coordinate; variable;
o, coefficient of diffusion, equation (23);
B.  vector function, equation (24);
B, vector function, equation (26);
B,  magnitude of §;
v, function, equation (25);
71, function, equation (27);
0, function of ¢;
k, coefficient of thermal conductivity;
A, parameter;
A, constant;
U,  separation parameter;
¢,  dimensionless coordinate, equation (2a);
p,  density;
7,  dimensionless time, equation (2b);
¥»  constant, equation (9b).
Subscripts
k, running index;

min, minimum value;

n,
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running index;



0, initial value; particular value;
s,  steady value;
w, value at the boundaries.

1. INTRODUCTION

IN PROBLEMS of heat conduction through solids
with or without internal energy generation or
radiation the interest is frequently in finding the
steady temperature distribution. When the
energy source and the physical properties of the
solid are independent of temperature the dif-
ferential equation to be solved is usually manage-
able. It possesses, under certain conditions,
a unique solution which is also the limit as time
tends to infinity of the solution of the correspond-
ing unsteady problem.

The heat conduction equation has been treated
in varying degree of generality. In the relatively
recent works [1-3], the energy source term was
assumed, most generally, to be position- and
time-dependent. The thermal properties of the
medium were taken either constant [1-3] or
position-dependent [4]. In some cases [5,6],
the heat conduction problem is considered with
temperature-dependent properties but without
energy source and radiation.

When the energy source and/or physical
properties are temperature-dependent it cannot
be claimed that the steady solution is always the
physical limit of the corresponding unsteady
solution. In those cases, an effort toward obtain-
ing the steady solution from the steady equation
alone may be successful but worthless since this
solution may not represent a physically possible
temperature distribution unless it is stable under
an arbitrary perturbation. The situation will later
be made more clear by way of a simple example.

It may formally be possible to judge the
stability of the steady solution after solving
the unsteady problem. This, however, is not
always practical; one should be able to de-
termine the stability from the very equation
of heat transfer. Physically, the unsteady
equation of transfer governs the readjust-
ment of the local temperature at any instant in
order to allow for the net gain in local internal

S. SELAMOGLU

energy due to various mechanisms, namely
thermal conduction, energy generation, and
radiation. When the latter are independent of
temperature the attainment of a final steady-
state temperature distribution is possible, so that
the net energy flux across any closed control sur-
face within the solid vanishes. On the other hand,
when the mechanisms of energy input are strongly
temperature-dependent, while the temperature
tries to adjust itself to the local momentary state,
it may be so that the rate of energy input
increases more rapidly than the conduction and
radiation losses could possibly follow. As a
consequence, there may be no asymptotic limit
forthe temperature distribution. The temperature
increases until the initial assumptions on the
physics of the problem become invalid and new
phenomena come into effect to alter them.

In the following, a simple demonstrative
example is given firstly. Later, the heat conduc-
tion equation is considered in a form as general
as practicable and its steady solution is analyzed
from the stability point of view. The stability
criterion in a locally one-dimensional problem,
which is the outcome of the analysis, is dis-
cussed last.

2. AN EXAMPLE

Consider the one-dimensional, unsteady prob-
lem with constant material properties and with
energy generation which is linear in temperature.
The differential equation for the temperature is
then

10T &*T 1
;E=a—x—2+;(Qo+'{T)» (1)

where « is thermal diffusivity, k¥ thermal con-
ductivity, Q, and 4 are constants. The boundary
conditions will be assumed, for simplicity, as
constant temperature T,, at the two boundaries
x =0 and x = [ The initial condition is an
arbitrary temperature distribution T(x,0) =
To(x) provided that it is integrable within the
interval (0,0), and that it equals T, at the
boundaries.
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The formulation may be made dimensionless
by the following transforms: '
? Q

1 _
x==f t=—1 T=T,+=T (2a,b,0)
T o A

The resulting equation is

oT T iP2 . iP A
=+ - =T+ =S +—T,) 3
ot 6{2+K1z2 +K7z2( +Q0 ») )
If, further, the last term is assumed to vanish,
A
1+—T,=0, 4
Qo
the equation becomes a simple one,
oT o*T il2 _
EREGART )
with the conditions imposed on T(, )
T(0,7) = T(n,7) = 0, 6)
TE,0) = To6), Ty0) = Tym)=0. (7)

The solution to equation (5) may be given as a
trigonometric series [7]

T¢ 1= ) Gk e~ " ¥ gin k¢ (8)
k=1
where
27 ir
Ci=— J.To(é) sinkédl, x=-—. (9a, b)
7 KT

0

The coefficient C; exists, in general, for all values
of parameter k. Since the least value of k is unity
the temperature distribution is stable (i.e. it does
not grow in time) if y < 1. In other words, T
tends to the limit zero everywhere as time in-
creases if

kn?

If, on the other hand, A does not satisfy the above
condition the temperature grows without limit.
In the particular case where

all components of T excepting

eventuallv die out leavin
ev Yy ai€ out leavir

entuall ving th

T.= C,siné& (12)

If, by chance, the initial distribution were to
coincide exactly with one of the sine functions,
say To(£) = T, sin m&, where Ty is a constant and
m is an integer, then one would have

T(¢, 1) = Tye* ™ sin mé. (13)

The stability of (13) cannot, however, be judged
through a comparison between x and m?>.
Although it would appear that when y < m?,
even if y > 1, the solution tends to zero every-
where, this is not always the case. After a slight
perturbation of T from the pure sinusoidal form
instability sets in if y > 1.
Consider now the steady equation
-

iL=0, (14)

@t
subject ot the same homogeneous boundary
conditions as (6). The problem always possesses
a trivial solution

T(9) =0, (15)
and a nontrivial solution
T(¢) = T, sin mé (16)

only when y = m?* where m is an integer. From
the previous discussion it is seen that both the
trivial and nontrivial solutions are unstable if
¥ > 1, and stable if y = 1. When y is not an
integer there is only the trivial solution which is
unstable if y > 1 and stable otherwise.
Summarizing, the stability of the steady
solution depends only on the value of y. The exis-
tence of a solution of the steady equation does
not guarantee its stability. In simple cases where
the unsteady solution can be found without
difficulty the steady solution can always be
obtained from the unsteady solution provided
that the latter assumes a limit as time tends to
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infinity. When this is difficult or not possible the
stability of the steady solution should first be
investigated before attempting to find it.

In the foregoing example it is interesting to
note that, when the interval (0,]) extends to
infinity, the stability condition (10) reduces to

A <0, (10a)

which is more stringent than (10). One can
introduce a characteristic length

I = Jl&/d)

so that when ! > I, the medium may be con-
sidered as being of infinite extent, and when [
is comparable to I, the finite dimension of the
medium must be taken into account. A reduction
in limproves stability. However, this effect should
depend upon the type of boundary conditions
imposed, in general.

amn

3. PERTURBATION EQUATION

In order to obtain a sufficiently general
formulation of the problem the following assump-
tions are in order.

(2) The material is a homogeneous and iso-
tropic solid. The physical properties may depend
upon temperature as well as on coordinates in
a differentiable manner.

(b) Energy is generated at a rate which may
vary with temperature and coordinates in a
differentiable manner.

(c) The material is transparent to thermal
radiation so that volume emission and absorp-
tion take place. Emission may be interpreted as
internal energy loss and absorption as energy
source so far as their roles in the equation are
concerned. They should both be obtained, in
general, throughintegral manipulationsextended
over space, frequency, and temperature at any
instant. It will suffice, however, in the present
analysis to introduce a term which implicitly
represents a temperature- and position-depen-
dent energy loss whether this be due to radiative
transfer or due to a different mechanism. The
finding of the explicit temperature dependence
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of this loss term should be formidable in case of
radiation.

Under the preceding assumptions the unsteady
heat transfer equation may be written as

oT
pc—=V.&«kVT) + Q — R

o (18)

where p, ¢, k, are the density, specific heat, and
the coefficient of thermal conductivity of the
solid obeying Fourier law, Q is the rate of
internal energy generation per unit volume,
and R is the rate of net energy loss from unit
volume, all being functions of position, r, and
temperature, T. The temperature is a function
of position and time, t.

Let a steady temperature distribution T(r)
exist. The various quantities entering equation
(18) attain steady values which will be indicated
by subscript s [e.g. k, = k(r, T)), etc.]. They must
satisfy the steady heat transfer equation

V.(xVT) + Q, — R, = 0. (19)

The difference between (18) and (19) is simply
the perturbation equation for the temperature
distribution which is perturbed from its steady
state ;

pc%(r_ T) = V.(xVT— xVT) + (0 — 0,)

—(R—-R). (20

Introducing T* = T — T, the perturbation tem-
perature, and linearizing the equation for small
perturbations one can obtain

oT* — Ok
—_—= ——r VT,
PsCs E KV°T* + [(5T>T:T, L+ sz:]
0k 00
* bl e
« VT* + {v. [(aT)VT] + (6T>
oR
N S *
(3T>T=T.} ™ 1

The coefficients of T* VT* and V2T* are
known functions of position since they are all
evaluated at the steady temperature T, which is
supposed to be known.
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One can write equation (21) also in the form

*
LOTY _ Gers 4 g.vT* 4 47

o Ot (22)

where a, B,y are functions of position only,
given by

o= K; (coefficient of thermal diffusivity), (23)
1

B= - VT + Vi) = (VIn k), (24)
1

7= [V-(VT) + & - R) es)

s

In the last three expressions prime denotes
differentiation with respect to temperature [e.g.
K, = (0x/0T),). By the use of (19) in (25), y may
be expressed in a different form for later use;

— RV
y = V(lnk),. VT, + (Q ” ) (25a)
s
There is an alternative way in obtaining of the
perturbation equation. If use is made of the
flux vectors for radiation loss and energy source
terms the perturbation equation becomes

*
1or* _ VIT* + B, . VT* + 3, T* (22a)
o ot
with
1
Bi=— [(Vk), + S, — F]}. (26)
1
11 =—[V.VL) + V.5, - V. F], @7)
where
V.F=R, V.§=0 (283D

It is more direct to define Q than the corres-
ponding flux S. Furthermore, R can be deter-
mined directly from the specific intensity of
radiation, at least in principle. Therefore, it
appears more natural and simple to adopt the
first formulation. The coefficient of VT* then

1593

consists only of the variation of the thermal
conductivity.

4. ANALYSIS

The discussion of the stability of T, has now
been converted to the study of the general
properties of the perturbation equation (22).
Since the time-dependence of the solution of
equation (22) will be the deciding factor in this
study the first step should be to separate out the
time and space components of the solution by ad-
mitting a product form

T*(r,t) =f(r). 6(2), (29)

which effects
0 + ub =0, (30)
VI+B.Vf+ [y +walf=0 (31

where u is the separation constant, a real number.
The perturbation temperature T* will be assumed
to satisfy homogeneous boundary conditions.
This assumption is not a restriction from
the stability viewpoint.

Clearly, the solution contains an exponential
time factor 6 = e *. The initial perturbation
should, therefore, be expressible in terms of the
solutions of (31), f(r; u). Depending on the finite
or infinite extent of the boundaries, the repre-
sentation may either be of series or integral or
mixed type. The summation or integration para-
meters contain discrete or continuous eigen-
values of u. Since (31) is multidimensional, the
eigenvalues of u are, in general, coupled with
the eigenvalues of the other separation para-
meters if equation (31) is separable. Otherwise,
the problem is too complicated to be considered
here.

In order that any arbitrary initial perturba-
tion T*(r,0) be expressible in terms of the
functions f(r; p) the latter must be a complete
set. The set of all eigenfunctions of equation (31),
if they exist, is of this character, namely complete.
Therefore, one should consider all eigenvalues
of (31). Among them g is the one with a decisive
role on stability since it appears as the time
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coefficient in the exponential factor. If the eigen-
values of u-are all positive then all perturbations
are stable. If, on the other hand, the set of
eigenvalues consists of negative members the
perturbations which are expressible in terms of
the eigenfunctions corresponding to the negative
eigenvalues are unstable. This means that the
steady temperature will grow anyway. Finally, if
u =0 is an eigenvalue of (31) then, since (30)
gives a time factor proportional to time, the
temperature is again unstable.

Further separation of equation (31) into its
coordinate components is, in general, not
possible. However, it may be simplified in form
by a proper choice of coordinate axes at the
point of interest. Hence, for example in local
rectangular coordinates with Ox-axis parallel
to B, the spatial component (31) of the pertur-
bation equation becomes

2 62
R L
where p is the magnitude of p. Equation (32)
cannot be separated still since § and y are
generally functions of all three coordinates.

Leaving the question whether equation (32)
possesses a complete set of characteristic solu-
tions for f with a lowest eigenvalue of g, it may
be reiterated that if it does then the steady-state
temperature is stable only if the lowest eigenvalue
of u is positive. If the range of eigenvalues of u
consists of nonpositive values there are then
certain preferred forms of perturbation which are
unstable and expressible in terms of the set of
eigenfunctions corresponding to those nonposi-
tive eigenvalues.

+ 0O+ %)f: 0, (32)

5. SPECIAL CASE: THE STEADY PROBLEM IS ONE-
DIMENSIONAL

In order to be able to reach more concrete
conclusions the problem will now be restricted
to the case where a, f and y are functions of x
alone. In view of the structure of these quantities,
the assumption requires that the steady para-
meters be one-dimensional. The perturbation,
however, is still allowed to vary three-dimen-
sionally.
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Introduction of a product solution f = X(x)
Y(¥)Z(z) into equation (32) results in three
equations,

X e p X
+ [0 + ;(";) —(k+D]X=0 (33
32—2 +kY=0, (34)
%} +1Z=0. (35

The last three equations are all special forms of
Liouville equation

4 [p(z) 91] + [42) + Ar(z)]y = (36)

z dz

The general behaviour of the solutions of (36)
is determined by the functions p, g,r and the
parameter A. The important results of the
analysis of Liouville equation are the following
(see e.g. [7], Chapters 5 and 6).

Let p,q,r be nonsingular and p,r positive
within a finite interval of z.

(a) There is an infinite set of district values
(eigenvalues) of A for which the solutions (eigen-
functions) are oscillatory, and they satisfy
Dirichlet-Neumann type boundary conditions.

(b) The set of eigenfunctions is complete.

(c) The set of eigenvalues contain a minimum
Apmin and extends to infinity.

(d) An oscillatory solution is obtained if
q + Ar > 0. The condition sets a lower bound
—q/r for eigenvalues, ie. A, > — (g/r), but
does not determine 4_; .

(e) If the interval for z extends to infinity the
distribution of eigenvalues and eigenfunctions
are continuous rather than being discrete. In this
case, Amin tends to the lower bound -—gqyr.

For stability purposes one may consider an
infinite medium thus allowing the temperature
perturbations to span the whole space. A
continuous spectrum of eigenvalues and com-
plete set of eigenfunctions are then needed to
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represent any possible three-dimensional per-
turbation. Returning to equations (33)-395),
the allowed range of eigenvalues should coincide
with the interval —(g/r) < A < oo in each of
them. In equations (34)and (35)p =r = 1,4 = 0,
hence k > 0,1 > 0. In equation (33), on the other
hand, p=e [f% g=ply—(k+ D), and r =
(p/2). Obviously, p and r are positive and non-
singular. Supposing that all gradients at steady-
state are finite, ¢ has no singularity either; the
eigenvalues all satisfy the condition

> —afy - (k + D). (38)

For stability u should be positive. Since its
smallest value is obtained when k and [ are
smallest, namely zero, one concludes that the
perturbations are stable if y is negative. In terms
of physical parameters the criterion for stability
is then

d ,d’I‘; g !_ R !
a(lnx)‘dx + (K)s <f>s<0.

1t is equally possible to consider a locally one-
dimensional steady case which has cylindrical
or spherical symmetry instead. Separation is
again accomplished in the same lines, but now «,
B, and y depend upon x, the radial coordinate,
alone. It can be shown by similar arguments that
the stability criterion (39) is valid in those cases
too.

(39)

6. DISCUSSION

(a) The condition for stability was obtained
in a special case: The steady problem is locally
one-dimensional, may the nontrivial dimension
be planar, cylindrical, or spherical at the point
of interest. Usually the dependence of the physi-
cal properties on coordinates as well as on
temperature is rather weak. It is, therefore,
tempting to generalize the criterion to the cases
where the steady problem also is three-dimen-
sional. At least when the properties vary slowly
one may expect that stability exists if

Vinx),. VT, + (%) - (-g) , < 0. (40)
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(b) The effect of the first term of (39) on
stability may either be like that of a source or a
loss. Writing explicitly,

4 1o 8T _ 16 dT,

dx K)sdx Tk, dx dx
k. dk, dT,
K O O 41
k2 dx dx’ “4D)

it is seen that the first term on the right behaves
like an additional energy source if x; and T, both
increase in the same direction, and like a loss if
they increase in opposite directions. When
K, is positive the second term acts like a loss
term if x, and 7T, increase in the same direction,
and like a source term otherwise. When it is
negative the reverse is true.

In particular, if the thermal conductivity is
independent of temperature the stability cri-
terion simplifies to

(9.« 6.

(c) In the majority of cases of interest, the
physical properties may be assumed constant,
i.e. independent of temperature and coordinates.
Then, (40) reduces to

0; <R

(42)

(43)

meaning that the loss term should depend
upon temperature more strongly than the source
term does.

(d) In certain phenomena of physics governed
by the general diffusion equation (18) the
stability of the physical quantity in question
may be checked by the same criterion. In [7]
may be found several examples of interest
scattered throughout the text (see Ch. 12.1,
pp- 1595-1603 for an application to chain reac-
tion in fissionable material).

(e) A final remark should be made about the
assumption that eigenvalues and eigenfunctions
are distributed continuously. The example given
at the outset shows that, in order for the medium
to be considered as infinite, its boundaries should
be separated by a distance which is large com-
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pared to a characteristic length. In the general
case, one should be able to make a similar
comparison with a suitably defined characteristic
length. If the characteristic dimension of the
medium is comparable with the characteristic
length then the lowest eigenvalue may con-
siderably be greater than the lower bound
— g/r; hence, for stability g need not be nega-
tive. It may have a small but finite positive value.
The roles of the quantities Q and R, however, do
not change although they should now be
evaluated for a system with finite boundaries.
Nevertheless, the assumption of infinite medium
gives a more general condition for stability
which is always valid.

7. CONCLUSION

The analysis provides a stability criterion
which is applicable to any locally one-dimen-
sional, steady temperature distribution, either
plane or with cylindrical or spherical symmetry.
It is also applicable to other diffusion problems
provided that the physical parameters be inter-
preted anew.

It is important that, although the steady state
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is assumed to be one-dimensional, perturbations
are not limited to one dimension only; they
may be three-dimensional and may be repre-
sented in product form through series or integrals
over the spectrums of eigenvalues.

In the general, three-dimensional case the
counterpart of condition (39) must be sought
before it is generalized into (40). This requires a
thorough analysis of equation (31).
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SUR LA STABILITE DE LA DISTRIBUTION DANS UN SOLIDE TRANSPARENT AVEC UNE
SOURCE INTERNE D’ENERGIE

Résumé—On étudie la stabilité de la solution de I’équation générale de la conduction de chaleur avec
source interne d’énergie fonction de la température et de la position, rayonnement et propriétés physiques
variables. On montre 3 partir d’un exemple simple que la source d’énergie dépendant de la température
peut provoquer un accroissement illimité de la température. Dans le cas de distributions monodimension-
nelles stationnaires de température et de propriétés on obtient la condition de stabilité de la distribution de
température dans un solide infini. Le résultat est discuté ainsi que sa validité dans différents cas.

DIE STABILITAT DER STATIONAREN TEMPERATURVERTEILUNG IN EINEM
DURCHSICHTIGEN FESTK ORPER MIT INNEREN WARMEQUELLEN

Zusammenfassung—Die Stabilitat der Losung der allgemeinen Wirmeleitungsgleichung mit temperatur-

abhéngiger-und lageabhingiger innerer Wirmeerzeugung, Strahlung und abhéngigen Stoffwerten wird

untersucht. An einem einfachen Beispiel wird gezeigt, dass eine temperaturabhingige Wirmequelle eine

unbegrenzte Temperaturerhbhung hervorrufen kann. Fiir eindimensionale, stationdre Temperatur- und

Stoffwertverteilung wird die Bedingung fiir stabile Temperaturverteilung im unendlichen Kérper abgeleitet.
Die Giiltigkeit des Ergebnisses wird fiir verschiedene Fille diskutiert.
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OB YCTONYUBOGTU CTALMOHAPHOI'O PACHPEJIEJIEHNA TEMIIEPATYPBHI
B MMPO3PAYHOM TBEPJIOM TEJIE C BHYTPEHHUM NCTOYHUKOM
9HEPI'MHU

AHHoTaIMA—3y4aeTCa CTAIMOHAPHOE pelleHHe YPABHEHMA TeILIONPOBOJHOCTH B Ciy4ae,

KOT;1a BHYTPEHHU! MCTOYHUK HHEPrum, uanydyeHne u gusudeckue cBoOMCTBA 3aBUCAT KaK OT

TEMIIepATYPH, TAK U OT KoopAuHaT. Ha npocroM npumMepe noKasaHo, YTO UCTOYHMK DHEPrHH,

3aBUCAIIMI OT TEeMIIEPATYPHl, MOMET BHI3BATh GeclpefelbHEIl POCT TeMIepaTypH. B cayuae

OIHOMEPHOTO CTALMOHAPHOTrO pAcCHpe/ielieHUA TEeMIepaTyphl U CBOMCTB NOIYYeHO YCIOBMe

YCTOWYMBOCTH pacnpefesieHHA TeMOepaTypsl B GeckOHedHoM TBepaom rtexe. OGcympmaerca
CTpaBeJIMBOCTh NONYYEeHHEIX Pe3ybTATOB,



